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AbslracL The learning of a set of p randam patterns in a linear perceptmn is Sudied 
in the limit of a large number ( N )  of input unit5 with noise on the weights. inputs and 
output. The pmblem is formulated in continuous time as a langevin equation, and the 
fin1 task is to evaluate the response ar Green’s function for the system. Whitr noise on 
the output is shown lo correspond to spatially “ e l a t e d  weight noise acting only in a 
subspace of Ule weight space. It is shown that the input noise acts as a simple weight 
decay with a sue pmponional to the load p m ” l e r  a = p / N .  With no weight decay, 
the relaxation time diverges at c( = 1. With B weight decay it k a m e s  shoner, and 
finite for CI = 1, but at the mst of a larger asymptotic learning e m r  that is is found 
analytically. It is shown that a small weight decay decreases the effect of noisz on the 
weights or outputs. 

1. Introduction 

In recent years there has been much interest in neural network models because of 
their ability to learn from examples. For some of thcsc models it has been possible 
to calculate, analytically, certain quantities like the capacity 11-31, However little 
analytical work has been done on the dynamics of the learning process i.e. asking 
questions about learning time and the trade-offs betwcen learning time and accuracy. 

In this paper delta rule or adaline learning is considered in the simple linear 
perceptron without hidden units, and earlier [ 4 7 ]  results on asymptotic learning 
times and capacity in the presence of noise are extendcd. In a previous paper noise 
on the connections was studied, and here I elaboratc on those results and carry out 
the same kind of analysis for the case of noisy inputs and outputs. In our previous 
paper we concentrated mostly on ‘constrained learning’, i.e. learning where the size 
of the weight vector is constrained to a particular length. In this paper the emphasis 
is on unconstrained learning. 

The network is a standard linear perceptron with N input units. Output units 
can always be treated separately, so it is sufficient to study one linear unit receiving 
inputs 6 RN and producing an output 

t Present address: Computer and Information Scicncrs, Univenily or California, Santa Ci-uz, CA 9.5064. 
USA. 
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1120 A Krcgh 

with wi the synaptic weights. It is assumed that a training set of p examples 
( ( P ,  C P ) ,  p = 1 , .  . . , p, is given, and the aim of the learning procedure is to find 
weights such that 

The learning process is formulated as a gradient descent minimization of an 
energy or mst function, which is usually taken to be the squared error of the output, 
(C-V)z. A term that penalizes large weights, +Axj w:, is added to make it possible 
to limit the sue  of the weights, so the cost function reads 

The change of weights is proportional to the negative gradient of E, and in continuous 
time thii becomes 

where 

c 

It is assumed that the input patterns as well as the targets are random. Note that 
‘batch update’ is assumed, i.e. all patterns are presented before the weights are 
changed. 

Three kinds of dynamic noise will be considered. 

(i) Noise on the inputs. White noise e t ( t )  added to the input patterns E r .  This 

(ii) Noise on the weights. White noise q i ( t )  added to the learning equation (4), 
corresponds to, e.g. noisy input lines in an electronic implementation. 

corresponding to noise in the weight update procedure. This is the most commonly 
studied form of noise (see, e.g., [lo]) and it leads in equilibrium to a Gibbs distribu- 
tion. 

(iii) Noise on the outputs. White noise f ” ( t )  is added to the target similar to the 
input noise. It enters the learning equation only throush the error C P  - VI’ f fp( t ) ,  
and can therefore be viewed as noise in the output determination, noise on the targets 
(noisy teacher), or noise in the error signal. This kind was studied by Der [7] and 
the results will be reviewed and expanded. 

All three kinds of noise are relevant for implementations of neural networks. 
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2. me response function 

In Fourier transformed form the solution to (4) can be written compactly as 

w ; ( w )  = C , ' ( w ) c g i j ( w ) w g ( w )  
j 

Here the response (or Green's) function was introduced, 

g(w)=[A+(X-iw/y , ) l ] - '  

its non-interacting limit, 

(7) 

and 

wp(w)  = G,(w)(Bi2n6(w)  + ci!. (10) 

The c; are constants depending on the initial condition. It is assumed that wi( t )  = 0 
for 2 <: 0. 

Note that in the static limit, 2 - 00, tbi = 0, so the solution to (4) is just 

w i ( i - m ) = T o d " = O ) B j .  U " ' 1  (11) 
j 

Here and in the rest of the paper w ; ( t  = 0) = 0 is assumed. The limit X i 0 
corresponds to the pseudo-inverse solution to the learning prohlem IS, 91. If X is 
very large g is completely dominated by A,  and wi E X-'Bi which corresponds to 
Hebbian synapses (see (5)) .  Therefore X can be used as a parameter to interpolate 
between the pseudo-inverse and the Hebbian solutions. 

Most quantities of interest can be calculated from the average response function, 
C i j ( w )  E [g i j (w) j t  which does not depend on the targets. [.I( means the average 
over the random input patterns E'. 'RI find the average one begins by expanding (8). 

This equation can also he found by iteration of the Dyson equation, which is derived 
directly from (8) by multiplying both sides by G,[A + ( A  - iw/yo)l] 

g = G, - GGAn. (13) 

The average can be found by diagrammatic mcthods a descrihed in 141. The self- 
energy, C ,  is defined by 

C; ' (w)  = G,'(w)6;; + C; ; (w) .  (14) 
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Figure 1. Diagrams for the self-energy The Wiggly line represents A, the single line 
-Go, and lhe double line -G. The pairing (and averaging) of the 6 Is shown Ly the 
doiied i i n e  and the x. Tne a d s  mnne~ied by i bex  iines have io have ihe same patiem 
and unit index. The last line shows how (he selfenergy can be drawn with ' d r e w 8  
diagrams. 

It is assumed that the components of the < are random and independent with zero 
mean and variance U*, 

The diagrams for the self-energy that survive in the N i CO limit are shown in figure 
1. (In [4] it is shown how one handles the general case of non-zero mean.) 

There are only diagonal terms in the expansion for E, proportional to 

and this diagonal element (denoted by C) becomes 

Gij is also clearly diagonal, and the diagonal element is given by 

Putting z = X - iw/y, and solving the equation yields G as a function of 2, 

l - C l - z / U > *  J ( z - z + ) ( z - z - ) / u 4  
C( 2) = 

2; 

One has to choose the '+' branch in order to get a causal solution: a l / =  behaviour 
in the large z limit. Hcre 

z* = -( 1 f &)'U2 (20) 

was introduced. 
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It is often convenient to know the average eigenvalue spectrum of the matrix A, 
for instance in order to integrate the learning error as a function of time. If A, are 
the eigenvalues of A the average spectrum can be written as 

From (19) one lindst 

’ (22) 
- (z+ z+) (x+2- ) /u4  p ( z ) = ( l - a ) O ( l - a ) 6 ( ~ ) +  

27rx 
It is implicit that the last term only contributes in the real regime between the roots 
-2- and -z+. The spectrum consists of a peak-the delta function-at x = 0, and 
a semicircle deformed by l/x between -2- and -z+. 

It is clear that U’ just scales the size of the eigenvalues, and can only play this 
role of a scaling factor. Therefore, without loss of generality, it will be assumed that 
u2 = 1 in much of the rest of the paper. 

3. Learning - with noise 

In this section the three kinds of noise mentioned in the introduction will be intro- 
duced. 

3.1. Weighf noire 
The effect of noise on the weights has been investigated [4]. This noise is represented 
hy adding a white noise ~ ~ ( 1 )  to the learning equation (4) 

The noise has correlation 

where T is a ‘temperature’ or noise level for the weight noise, and ( . )T  denotes an 
average over this noise. In Fourier transformed form the solution (7) to the learning 
equation now reads 

( ~ l i ( i ) l l j ( t ’ ) ) ~  = - 1’) (24) 

When ’wi is averaged over noise the noise term will simply disappear; it cntcrs only 
in terms with Therefore relaxation times ctc, are independent of T,  as will 
be. seen in the next section. 

The equal-time correlation function is defined as 
c i j  E (ZUi(t)wj(t))T - (W;(l))T(wj(t))T. 

c = Tg(w = 0 ) .  

(26) 
There exists an important relation (derived in appendix A) between this and !he 
response function 

(27) 

t This specirum can also be mlculaled by the replica method, see 151 
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3.2. Output noire 

Adding white noise fJ’(t) to the target, C P  --+ C P  + f P ( t ) ,  gives a learning equation 
of the same form with effective noise 

Since this noise is additive (and ( f i i ( t ) )  = 0) the noise average of wi is independent 
of the noise, as with weight noise, and the relaxation times will be the same. 

In this case the noise is projected onto the subspace spanned by the patterns, so 
it does not act in the orthogonal subspace. The variance of the noise is 

( f i i ( t ) r j j ( t ‘ ) )T  = A i j ( f ” ( t ) f P ( t ’ ) ) ~  = 2 T y , A i j 6 ( t -  t’). (29) 

In each eigendirection of A the noise is therefore white, but multiplied by the cor- 
responding eigenvalue of A. This spatially correlated noise changes the fluctuations 
in the system if compared to the uncorrelated weight noise. The difference is clearly 
seen in the different form of the fluctuation-response relation, which now reads (see 
appendix A) 

c = T A g ( w  = 0 )  = T(I - Xg(w = 0 ) ) .  (30) 

3.3. Input noire 
The analysis is now extended to the case of noise on the input units, i.e. in addition 
to the actual value of the input pattern there is noise. If white noise like (24) is 
assumed, it turns out that the delta function would make the self-energy blow up. 
Therefore the noise must have a finite size at t = 0, and the following form of the 
correlation function is chosen 

(31) 
( ~ f ( t ) e y ( t ‘ ) ) ~  = ~ 6 ~ ~ 6 , , , , e  -Alt - t ’ l  

It will be assumed that A is large. The level of this noise is called y, and averages 
are denoted (.) 

7 :  The noise is mcluded in the Bi (5) and A i j  (6) by defining 

B ! ( t )  = N - ” 2 = y C ” ( € ;  + & t ) )  (32) 
P 

The dynamics will then be governed by the samc equation (4) with these new 
time-dependent A and B.  Fourier transforming (4) now yields 

Wi(W) = W : ( w )  - C,(W)Atj(W - W ’ ) W j ( W ’ ) .  (34) 

In this and later equations there are implicit sums on indices appearing twice in 
a term, and integrals (divided by 2 ~ )  over doubly-occurring w. The form of this 
equation is similar to the one obtaincd without input noise. Iteration gives 

U J ~ ( W )  = [G,(w)6i j6(w -U ’ )  - C , ( w ) A I j ( w  - w’)C,(w‘ )  + G,(w)AI,(w - w ” )  

x G o ( w ” ) A i j ( w ” -  w‘)C,(w’) - . . . I  C , ’ ( W ‘ ) W ~ ( W ’ ) .  (35) 
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Inside the square brackets is the unaveraged response function, SO in this case the 
average one is 

G;j(w- U') = ( [GO(w)6 ; j  - G , ( W ) A ; ~ ( W  -w')G,(w') 

+ G O ( ~ ) A : k ( ~  - w " ) G , ( w " ) A ~ j ( w "  - w' )G, (w ' )  - .  . .] ) . (36) € 7  

(No integral on w' here.) Here only the case of uncorrelated patterns where the 
Green's function is diagonal is considered, although extension to biased patterns 
should be. easy (see [4]). 

/*.. .. . ,>. ... .. .. 

e 0 %  0 0  

..A... ... ... ,.' 
+ -+.A .. + +A&#+ih + &+.Al&b + . . . .  

F&m 2. Some of the diagrams for the new xlf-energy. %o ends mnnected by a 
dolled line wilh a drcle means pairing of two c and Ones connected with dotted lines with 
a c m s ~  means pairing of two E as before. Only the firs1 of these diagrams contributes 
U) the lowest order in ] /A.  The self-energy diagrams in figure I &ill contributes in this 
case, bul 'hey are not shown here. 

lb give a contribution the e have to be paired, just like the patterns, giving 
rise to self-energy diagrams of similar topology as the diagrams for the noiseless 
case, see figure 2 Luckily, it turns out that only the simplest of the new diagrams 
contributes to the self-energy to lowest order in l / A .  The Fourier transform of 
e-Al'l is 2A/(A2 + U'), so one finds the contribution from the first of the new 
diagrams to be 

In appendix B other terms in the self-energy are calculated, and it is shown that 
their contribution is of relative order l / A  or less. For large A the only additional 
term in the self-energy is then just a y ,  so this noise acts exactly like an additional 
weight decay term. 

Including the l / A  corrections modifies the magnitude of the weight decay a little 
"1" 'US" G I l ~ L I v G I y  51,111110 UIG "dll*llLC m- U1 L U G  urpuL p r K X m  (GyuaLrurl (Id,,. x c  
appendix B for details. 

Input noise acts completely different from the two other kinds of noise described 
previously, and in the following it will simply be treated as a weight decay, X # 0, 
without explicitly writing the term ay. 

..__I -a"- ^P^^.L_^L -r.-:..,.- .L- - 2  ^F .I.- :.."..I " -..-.. ~" /̂ ,... "d.." ,,<,\ 0.. 
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4. Relaxation times 

G( z )  has a pole at z = 0 if a < 0 and a branch cut along the real axis between z+ 
and z- given by (20). The pole has the following meaning. For a < 1 the pattem 
vectors E' span a p-dimensional subspace of the input space which will be called the 
pattern subspace. If X = 0 the dynamics (4) acts only in this subspace. Therefore 
there will be a non-relaxing component of w in the complementary subspace. This 
gives rise to the pole at z = w = 0. For X > 0 the part of w outside the pattem 
subspace will decay exponentially with exponent A. In either case the pole does not 
describe the interesting part of the dynamics (i.e. that in the pattern subspace), so it 
is subtracted from G. 

For o( < 1 and small z ,  G ( z )  2 (1  - a ) / z ,  and a new C is defined 
C(Z) - ( 1  - a ) / ~  for a < 1 

for oi > 1. G ( 2 )  = { G ( z )  

Then G can be written as 
-11 - a1 - 2 + J ( z  - z + ) ( z  - 2 - )  

G( 2 )  = 
22 

for both a > 1 and a < 1.  
The characteristic relaxation time can be found from the response function (see 

[41) 

I i = ,\ 

1 aG:(z) 
T=---  

yoG(z) a z  

Differentiating (39) gives, after a little work, 

1 2X ' 1  J ( A - z + ) ( X - z - )  

X - G  
T o r = -  1 + 

. 

In the limit of no decay ( A  = 0) the previous result [4, 51 is recovered, 
l / ( l - a ) 2  for a < 1 
a / ( l - a ) ?  f o r a > 1  YUT = 

. .  is ' 

right at the critical point G( I) 0: z - ' / ~ ,  leading to a t - ' / *  error decay instead of an 
exponential one. 

Figure 3 shows the relaxation time as a function of a for X = 0.2.  The qualitative 
behaviour is the same for other values of A, but the relaxation time decreases with X 
(at the cost of a higher learning error, which will be calculated in the next section). 

Instead of considering this average relaxation time, one could instead look at the 
longest relaxation time in the system. This is given by the inverse of the smallest 
eigenvalue of A + XI. The smallest eigenvalue of A is - z - ,  giving a relaxation time 

a iiiiicd s:o\i;ing d g x i  ;is :he cikicA pia:  (a  = :) is app;oa&ed, and 

(43) 

fGllCjwS 2 ciir<e Eke tkc dotted Oiie in figure 

1 
= X + ( l -  fi)?' 

This is also shown in figure 3. If  the weight decay is chosen equal to ya, correspond- 

3. The phase transition smears out because of the noise, but it is interesting to note 
that what is left of it (the peak in  r ' )  moves to smaller a. By inserting X = ya into 
(43) and using aT' /au  = 0 one linds the value of  U that gives the  longest relaxation 

ing io input noise, i'ne ie;axation 

time is amaXr, - - (1  + y)-?. 
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01 

P@w 3. Relaxation limes. Tne full curve is the average relaxation time T, and the 
bmken mrve is the longest relaxation time r’, b t h  for X = 0.2.  Tiley peak a1 ol = 1.  
The chain cuwe is the average relaxation time for a weight decay of X = ye (7 = 0.2) 
mlrespnding to input noise of level 7. D e  dotted curve is the longest relaxalion time 
for the Same parameters. 

5. Learning error 

In this section I will calculate the size of the learning error. It is 

Normalized this way, it is one if the output is zero (rabula rum). It is assumed that 

The second term in the error can be found from the Langevin equation (23) by 
[C”C”I( = 

multiplying it by w i  and averaging, 

Since ( w i ) T  = Cj gij(0)Bj in this limit (see (11)) the second of these terms 
becomes 

1 1 
a N  E -  a = --tr[gA] - - ( l -AG)  (47) 
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(L 

Figure 4 Asymptotic e m r  as a function of a for T = 0 .  m e  full a w e  mrrespands 
U, X = 0 ,  the broken curve lo A = 0.2,  and the dolled mrve mrrerpands 10 X = y a  
(7 = 0.2) (yo = 1 is assumed.) 

where the Dyson equation (13) has been used in the last transformation. Here the 
response function written with no argument means it should be taken at w = 0, ie. 
G'E G(w = 0). 

In [4] it is proven that if the targets C' are random 

q is part of the correlation function (26), so using the fluctuation-response relation 
(27) the thud term in the error can be found, 

lb calculate the last term in (46) one multiplies the averaged Langevin equation 
(23) by ( w i ) T ,  

O =  C ( w i ) T ( & i ) T  = C ~ o ( ~ i ( w i ) T  - E ~ i j ( ~ i ) T ( w j ) T  - ~ ( w i % ) .  (50) 
i j 

Subtracting this from (45) and rearranging the terms gives 

c ( 0 i W i ) ~  = ~ o C ( A 6 ; j  . .  + A i j ) ( ( 7 U i l O j ) ~  - ( W i ) ~ ( w j ) ~ )  = Y o ~ S f i l C i j .  . .  (51) 
i :J  I J  

Using ~~ again the fluctuation-response relation (27) g-'c = TI and then 

- -y(Oiwi) ,  1 = T / a .  
YOP 1 

Collecting all the terms the error (44) bccomes 

. a - 1  AZaG T E = - - . . - -  + ( 1  - AC)-. 
a a ax a (53) 

The asymptotic error as a function of a h depicted in figure 4 for some values 
of A. By a comparison with figure 3 one observes that thc asymptotic error increases 
when the learning time decreases. 
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Almost the same calculation applies for output noise. The part independent of 
the noise is unchanged. The only difference is that the fluctuation-response relation 
has to be replaced by (30). The result is 

. a - 1  XZaG X 
E = - - - -  + ( l - - ( l - X G ) ) T .  a 01 ax a (54) 

Tie simpie iinear T behaviour in these equations IS ctue to the i a a  that tine T- 
noise enters linearly in the Langevin equation. The l /a  behaviour comes from the 
normalization of the error. If the error were normalized the same way as the original 
cost function E, the 1/01 would he absent. 

If X is sufficiently small G( A )  can he expanded, 

Then for X = 0 the error is 

{ T  for a < 1 

with weight noise. 
Keeping more terms in the expansion allows one to follow what happens for X 

close to 0. In particular the derivative of E is always negative at X = 0, meaning 
that the error always decreases close to X = 0. Thus a weight decay is beneficial to 

it turns out that the effect is relatively small, of order T2 in this approximation at 
small T.  But even if the error decrease is marginal it is worth remembering that 
a weight decay also decreases the learning time. Since a weight decay corresponds 
to input noise, one can say that weight noise and input noise act oppositely when 
balanced right. 

;eai*"ig, =j p"ttiiig ;:e &~va*<e qua; ;ij zero me mihimuiii E a a  be found, 

n.e nutput coke. mode! shows the .%me hph2vin.r. 

6. Conclusion 

A linear 'network' consisting of one unii was studied, almost the simplest system one 
can imagine. Nevertheless a rich and interesting behaviour was found. There is a 
phase transition from perfect learning to imperfect learning at a = 1, if X = 0. For 
X # 0 this transition is rounded, similarly to what happens in physical systems, giving 
a finite relaxation time even at a = 1. 

It was shown that the effect of noise in the input corresponds exactly to a weight 
decay of size ye. If the input noise has a finite time correlation (A < 03) the decay 
decreases slightly and the response function changes as if the input patterns had a 
more narrow distribution (to lowest order in l / A ) .  It is interesting to note that in 
the thermodynamic limit (infinite N) input noise can be completely compensated by 
a negative weight decay of same absolute size as the decay from the noise. 

Noise on the output implies a pattern-dependent spatially correlated noise on 
the weights, acting only in the subspace of weight space spanned by the patterns. 
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Therefore the relaxation times are the same, and most other quantities like the 
asymptotic error behaves qualitatively the same for weight and output noise. 

An interesting effect of weight decay was discovered: a small weight decay (or, 
equivalently, noise on the inputs) decreases the effect of weight or output noise. Since 
the weight decay at the same time decreases the learning time, it will often pay to 
learn with a small decay if the system is noisy. 

Here only learning was studied. A very important issue is generalization, Le. how 
well the network can imitate a teacher. If this teacher is another linear perceptron 
with k e d  weights, this generalization ability can be calculated. This has been treated 
in (121 and is expanded in [13]. 

The hope is that the results, from this simple system can guide us in the inves- 
tigation of the more complicated and, from the point of view of applications, more 
interesting nonlinear networks. 
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Appendix A. Fluctuation-response relations 

In the long time limit wi(w)  = 7;' E, g,>(w)qj(w) (cf (25)), so the correlation 
function is 

For both weight noise and output noise the last noise average will produce a 2n6(w+ 
4, So 

or 

With the uncorrelated noise on the weights given by (24) ( ~ ( w ) ) l , ( - w ) )  = 
2YoT6k1, So 
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The product g(w)g( -w)  can be found from the series expansion of g (12) (im- 
plicit sums on repeated indices): 

s i k ( w ) g j k ( - w )  = [Go(w)6ik - G ; ( w ) A ~ ~  + G;(w)A~,A,, - . . . I  
x [ G 0 ( - w ) b k j  - G2(-w)Akj + C ; ( - W ) A ~ , A , ~  - .  

= G,(~)G,( -w)6~j  - [ G i ( w ) G , ( - w )  + Go(w)G~(-w) lAi j  

+ [ G ~ ( w ) G , ( - w )  + G;(w)G;(-w) + Go(w)G;(-w)]AikAkj - . . . . 
('4-5) 

The quantities in the square brackets can easily be summed. CO(-w) is equal to 
the complex conjugate of G,(w), G,,(w) = Go(-w), so 

Then 

- ImG;(w)Aij + ImG;(w)A;kAk; - . . .] 
= -Imgij(w). YO 

W 

Finally (A4) gives the usual form for a fluctuation dissipation theorem (FDT) 

2T 
c . . ( w )  = --Imgij(w). 

w : J  

This can be integrated by using the Kramers-Kronig relations (see [Il l)  to give 

c . . ( i = O ) = T g p ( w  'I I J  =O). (AS) 

For output noise given by (29) a similar calculation leads to (30). 'It see that 
this fluctuation-response relation is the Same as the one derived in [7] one has to use 
equation (18): 

TaG = T ( l - X G ) = -  
1 + G  

where G means G(w = 0). 
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Appendix B. Diagram expansion for input noise 

In this appendix the leading corrections to the self-energy will be found. yo = 1 will 
be assumed. 

There are two families of diagrams in the self-energy, see figure 2. The family 
where the two ends are connected by a pattern average can be summed exactly; these 
include the original diagrams from the noiseless case, shown in figure 1. The first of 
these (first in the second row of figure 2) gives, except for a minus sign, 

2?r /dw"(c(w - w")E(w" - w')),C(w") 2 - A - iw 2rr6(w - w'). (B1) 

Here it was used that G(1) = 0 for 1 < 0 (causality), and that G(l = 0) = 1. It 
was also assumed that G(1) varies on a time scale much slower than l / A ,  that is  
the largest eigenvalue of A' has to be much smaller that A. ?b lowest order the 
input noise corresponds to a weight decay of size y a ,  which implies that the largest 
eigenvalue is y a  + (1 + &)'. Therefore the condition is 

A >>-fa+ ( 1  + & ) 2 .  (B2) 

This condition will also apply to the rest of the calculations here. 
By calculating a few more diagrams from this family, as done earlier, it turns out 

that each noise average just contributes ? / ( A  - i w ) ,  so the sum of the whole family 
can be written as 

1'- ...) 6 ( w - w ' )  

This includes terms of higher order than l / A ,  which of course does not hurt. 
It is not straightfonvaid to sum the other family of diagrams with a noise average 

connecting the ends (first row of diagrams in figure 2). Therefore only the lowest 
order ones are considered. Apart from the first of these, which is calculated in (37), 
only the two following diagrams contributes to order 1 /A.  The first of these gives 
the same as (Bl), and the second gives (except for a minus sign) 

a / d w " d w ,  dw2 ( c ( w , ) ~ ( w ~ ) ) ~ ( e ( w  - w" - w1)e(w" - w' - w2)),G(w") 
(27113 

(84) 
y?a  

* - 2n6(w - w ' ) .  2A - iw 

Higher order diagrams can he  calculated in the same way, but they turn out to be 
smaller by at least 1 /A.  

Finally the terms can he collected to give the self-energy, 
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where the 2 d ( w  - U') is dropped. Because A is large, C can be approximated by 
setting w = 0 in the new terms, 

I 2  \ N 

In this approximation the weight decay is just a little smaller than was found to lowest 
order in A. It is actually easy to solve for G. Putting X = a y [ l  - (1  + y/2)/A] 
equation (14) reads 

If this is compared to (17) we see that it works exactly like having a different (reduced) 
static variance of the input patterns, U' = 1/11 + r/A].  

Thus it has been shown that input noise corresponds (to order l / A )  to having a 
weight decay of size y a [ l  - (1 + y/Z)/A)] and a wriance of the input distribution 
of 1/11 + r / A ) ]  instead of 1. 

" - P  ------ ~ nerrrrr,cr* 
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