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Abstract. The learning of a set of p random patterns in a linear perceptron is studied
in the limit of a large number (N} of input units with noise on the weights, inputs and
output. The problem is formulated in continuous time as a Langevin equation, and the
first task is 10 evaluate the response or Green’s {unction for the system. White noise on
the output is shown to correspond to spatially correlated weight noise acting only in a
subspace of the weight space. It is shown that the input noise acts as a simple weight
decay with a size proportional to the load paramcter o = p/N. With no weight decay,
the relaxation time diverges al o = 1. With a weight decay it becomes shorter, and
finite for v = 1, but at the cost of a larger asymptotic leaming error that is & found
analytically. [t is shown that a small weight decay decreases the effect of noise on the
weights or outputs.

1. Introduction

In recent years there has been much interest in neural network models because of
their ability to learn from examples. For some of these models it has been possible
to calculate, analytically, certain quantities like the capacity [1-3]. However little
analytical work has been done on the dynamics of the learning process i.e. asking
questions about learning time and the trade-offs between learning time and accuracy.

In this paper delta rule or adaline learning is considered in the simple linear
perceptron without hidden units, and earlier [4-7] results on asymptotic learning
times and capacity in the presence of noise are extended. In a previous paper noise
on the connections was studied, and here I elaborate on those results and carry out
the same kind of analysis for the case of noisy inputs and outputs. In our previous
paper we concentrated mostly on ‘constrained learning’, ie. learning where the size
of the weight vector is constrained to a particular length. In this paper the emphasis
is on unconstrained learning.

The network is a standard linear perceptron with N input units. Output units
can always be treated separately, so it is sufficient to study one linear unit receiving
inputs £ € R and producing an output

N
V=N_llzzwf£l' (1)
i=1
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with w,; the synaptic weights. It is assumed that a training set of p examples

(&#,¢*), ;0 = 1,...,p, is given, and the aim of the learning procedure is to find
weights such that

N
V“-_"N-INZwi{:-J’:C”‘. )

i=1
The learning process is formulated as a gradient descent minimization of an
energy or cost function, which is usually taken to be the squared error of the output,

(¢-V)2 Aterm that penalizes large weights, 1A 3", w?, is added to make it possible
to limit the size of the weights, so the cost function rcads

E= 3¢ = Vi AT w. 3
£ Z - "
n 1

The change of weights is proportional to the negative gradient of E, and in continuous
time this becomes

. 9E

Wy =~y = g (B,. =Y Ajjw; = dw (4)
: j

where

B; = N'I”ZC“E? (5}

[
1
Ay =2 Erel (©)
o

It is assumed that the input patterns as well as the targets are random. Note that
‘batch update’ is assumed, i.c. all patterns are presented before the weights are
changed.

Three kinds of dynamic noise will be considered.

(i) Noise on the inputs. White noise €/(t) added to the input patterns . This
corresponds to, e.g. noisy input lines in an electronic implementation.
(i) Noise on the weights. White noise n,({) added to the learning equation (4),

. OFE

w; &% = —— + 7;(1)
corresponding to noise in the weight update procedurc. This is the most commonly
studied form of noise (see, e.g., [10]) and it leads in equilibrium to a Gibbs distribu-
tion, '

(iii) Noise on the outputs. White noise f#(t) is added 1o the target similar to the
input noise. It enters the Jearning equation only through the error {# — V'# + f#(t},
and can therefore be viewed as noise in the output determination, noise on the targets
(noisy teacher), or noise in the error signal. This kind was studied by Der [7] and
the results will be reviewed and expanded.

All three kinds of noise are relevant for implementations of neural networks.
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2, The response function

In Fourier transformed form the solution to (4) can be written compactly as

wi(w) = Gyl(w) Y g, (w)w(w). )
J

Here the response (or Green's) function was introduced,
g(w) =[A+ (A —iw/y)I! ®
its non-interacting limit,

1

Go(w) = m

®)
and
wi(w) = Gy{wl( B;2ré(w) + ¢;). (10

The ¢; are constants depending on the initial condition. It is assumed that w;({} = 0
for t < 0.
Note that in the static limit, { — oo, 4@; = 0, so the solution to (4) is just

o~
o
[
[

wAt—=00)= g.(w=0)8..
LY 7 L:d‘-'l]\ F J
j

Here and in the rest of the paper w;(t = 0) = 0 is assumed. The limit A — 0
corresponds to the pseudo-inverse sclution to the learning problem [8, 9] If X is
very large g is completely dominated by A, and w; ~ A~! B, which corresponds to
Hebbian synapses (see (5)). Therefore A can be used as a parameter to interpolate
between the pseudo-inverse and the Hebbian solutions.

Most quantities of interest can be calculated from the average response function,
G (w) = [g;;(w)]e which does not depend on the targets. [-], means the average
over the random input patterns £#. To find the average one begins by expanding (8),

f_.'Hfr.a\: [ﬁ(s\—f]?(r!\ﬁ.—l—f}"’_j(rl\ _] {12
g\ ) 7 O [l | AV ‘ \ie)

ij A

This equation can also be found by iteration of the Dyson equation, which is derived
directly from (8) by multiplying both sides by G[A + (A — iw/vy)l]

g = Gy - GoAg. (13)

The average can be found by diagrammatic mcthods as described in [4]. The self-
energy, X, is defined by

Gl (w) = GgH(w)by; + Ejj(w). (14)
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Figure L. Diagrams for the self-energy. The wiggly line represents A, the singie line
—(y, and the double line —G. The pairing (and averaging) of the £ is shown by the

P T U T .

doiied lines and the x. The ends connecied by ihese lines have io have ihe same paiicn
and unit index. The last line shows how the seif-energy can be drawn with ‘dressed’
diagrams.

It is assumed that the components of the £ are random and independent with zero
mean and variance o2,

[ff’]f =0 and [‘5:1'5;]{ = 61-1-5””0'2. (15
The diagrams for the self-energy that survive in the N — oo limit are shown in figure

1. (In [4] it is shown how one handles the general case of non-zero mean.)
There are only diagonal terms in the ¢xpansion for X, proportional to

[N‘qZ DRI f:_1L=w"’ (16)

M i]iz...iq_l

and this diagonal element (denoted by ) becomes

¥ =cla(l G4 (oG - (eGP + ) = o’a (17

=c'a(l-0o (o"G)" — (o) + ) = e (17)

G;; is also clearly diagonal, and the diagonal clement is given by
: 2

-1 el oy e oln

GTW)= Gl (@) 2 = A= D+ e (18)
Putting z = X\ — iw /=, and solving the equation yields G as a function of =z,

G(z)=1—a—z/cr2:t \/(z—z_*_)(z—z_)/o-"‘. 19)

2z

One has to choose the ‘4 branch in order to get a causal solution: a 1/= behaviour
in the large z limit. Here

zy = (14 Vo)?a? (20)

was introduced.
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It is often convenient to know the average eigenvalue spectrum of the matrix A,
for instance in order to integrate the learning error as a function of time. If A, are
the eigenvalues of A the average spectrum can be written as

olz) = %Za(m_ A= %Z%i_l:%lm (z+i6- 4,07,
r T (21)

= LlimIm+ 6 G(z = —z - i8).
™ 6—0

From (19) one finds}

po(2) = (1 - )01 — a)é(z) ¢ Yo F 2@tz )"

27z
It is implicit that the last term only contributes in the real regime between the roots
—z_ and —z. The spectrum consists of a peak—the delta function—at = = 0, and
a semicircle deformed by 1/x between —z_ and —z,.
It is clear that o2 just scales the size Of the eigenvalues, and can only play this
role of a scaling factor. Therefore, without loss of generality, it will be assumed that
o? = 1 in much of the rest of the paper.

3. Learning with noise

In this section the three kinds of noise mentioned in the introduction will be intro-
duced,

3.1. Weight noise

The effect of noise on the weights has been investigated [4]. This noise is represented
by adding a white noise n;{¢) to the learning equation (4)

W=y | Bi— D Agw; — dw | + (1), 23)
i
The noise has correlation
(mi(t)m;()yr = 2T 76, 6(¢ — 1) (24)
where T is a ‘temperature’ or noise level for the weight noise, and {-), denotes an
average over this noise. In Fourier transformed form the solution (7) to the learning
equation now reads

Jw) = s lewqw M).
w; )_,Z-g”( )(Gu( yu(w) + = ) (25)

0

When w; is averaged over noise the noise term will simply disappear; it caters only
in terms with (w?),. Therefore relaxation times etc, are independent of T, as will
be seen in the next section.

The equal-time correlation function is defined as

¢y = (wi()w; (1)) p — {wi (1)) (w, (1)) 7. (26)
There exists an important relation (derived in appendix A) between this and the
response function

c=Tg(w=0). 27)

t This spectrum can also be caiculated by the replica method, see [5].
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3.2. Output noise

Adding white noise f#(t) to the target, {# ~— (¥ 4 f#(t), gives a learning equation
of the same form with effective noise

A1) = N7V23 el fr(e). (28)
I

Since this noise is additive (and (#;(1)} = 0) the noise average of w, is independent
of the noise, as with weight noise, and the relaxation times will be the same.

In this case the noise is projected onto the subspace spanned by the patterns, so
it does not act in the orthogonal subspace. The variance of the noise is

(B:(D0;(1N)r = Ay (F O () = 2Ty Ay 6(1-1'). 29

In each eigendirection of A the noise is therefore white, but multiplied by the cor-
responding eigenvalue of A. This spatially correlated noise changes the fluctuations
in the system if compared to the uncorrelated weight noise. The difference is clearly
seen in the different form of the fluctuation-response relation, which now reads (see
appendix A)

¢ = TAg(w = 0) = T(I - Ag(w = 0)). (30)

3.3. Input noise

The analysis is now extended to the case of noise on the input units, i.e. in addition
to the actual value of the input pattern there is noise. If white noise like (24) is
assumed, it turns out that the delta function would make the self-energy blow up.
Therefore the noise must have a finite size at ¢ = 0, and the following form of the
correlation function is chosen

(el (D (1)), = 766,672 31

It will be assumed that A is large. The level of this noise is called ~, and averages
are denoted (-),.
The noise is included in the B; (5) and A;; (6) by defining

Bi(t) = N7/ ¢H(el + (1)) (32)
mn
1 .
AG(0) = 5 D68 + e (DIEL + (). (33)
[
The dyramics will then be governed by the samc equation (4) with these new
time-dependent A and B. Fourier transforming (4) now yiclds
wi(w) = wi(w) - Golw)Ajj(w = ww;(W'). 34)

In this and later equations there arc implicit sums on indices appearing twice in
a term, and integrals (divided by 2w) over doubly-occurring . The form of this
equation is similar to the onc obtaincd without input noise. Iteration gives

wi{w) = [G(w)b;;8(w - ') — Gy(w)Afj(w ~ W) Gy(w') + Go(w) Afp(w ~ w")
X Gy(e") Al (" = ) Golew') - 1G7 (W (). 35)
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Inside the square brackets is the unaveraged response function, so in this case the
average one is

Gij(w = w') = ([Gy(w)§;; — Go(w) A5 (w — w') Gy (w")
+ Go(w) Afe(w = ") Go(W) AL (W - W Gy(W) ~ -]}, (6)

(No integral on «' here.) Here only the case of uncorrelated patterns where the
Green's function is diagonal is considered, although extension to biased patterns
should be easy (see [4]).

v‘o'-
[} A AR
2 = M+ A - AN+ AMeeAY
x o X X
A X,
‘.‘x‘\ ."‘ “". ‘-"' -‘"-
+ AN+ MAERWAERAS |+ ARERAAERAAN - -
-] 5 X g @
Figure 2. Some of the diagrams for the new self-energy. Two ends connected by a
dotted line with a circle means pairing of two € and ones connected with dotied lines with
a cross means pairing of two £ as before. Only the first of these diagrams coatributes
to the lowest order in 1/A. The self-energy diagrams in figure 1 still contributes in this
case, but they are not shown here.

To give a contribution the ¢ have to be paired, just like the patterns, giving
risc to self-cnergy diagrams of similar topology as the diagrams for the noiseless
case, see figure 2 Luckily, it turns out that only the simplest of the new diagrams
contributes to the self-energy to lowest order in 1/A. The Fourier transform of
e~ 2l is 2A/(A? + w?), so one finds the contribution from the first of the new
diagrams to be

/ dwlz—,}ﬁg:(fi‘(wl)e?(w —w =),

P dryA

In appendix B other terms in the sclf-cnergy are calculated, and it is shown that
their contribution is of relative order 1/A or less. For large A the only additional
term in the self-energy is then just o+, so this noise acts exactly like an additionai
weight decay term.

Including the 1/A corrections modifies the magnitude of the weight decay a little
and ako effectively shrinks the variance o2 of the input patterns {equation (15)). See
appendix B for details.

Input noise acts completely different from the two other kinds of noise described
previously, and in the following it will simply be treated as a weight decay, A # 0,

without explicitly writing the term a-y.
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4. Relaxation times

G(z) has a pole at z = 0 if & < 0 and a branch cut along the real axis between z,
and z_ given by (20). The pole has the following meaning. For « < 1 the pattem
vectors £# span a p-dimensional subspace of the input space which will be called the
pattern subspace. If A = 0 the dynamics (4) acts only in this subspace. Therefore
there will be a non-relaxing component of w in the complementary subspace. This
gives rise to the pole at z = w = 0. For A > 0 the part of w outside the pattern
subspace will decay exponentially with exponent A. In either case the pole does not
describe the interesting part of the dynamics (i.e. that in the pattern subspace), 50 it
is subtracted from G.
For &« < 1 and small z, G{z) ~ (1 — a)/z, and a new G is defined

. Glz)—-(1-a)/fz foragl
G(z)=

G(z) fora >1.
Then & can be written as

N —eal—z4+/(z—z, ) z—2_)

2z

G(z) =

forboth o > 1 and o < 1.
The characteristic relaxation time can be found from the response function (see

[41)

(38)

1 aG(=
re=o— L 26 (40)
Y G(z) 9z Sz
Differentiating (39) gives, after a little work,
1 A=z iz
Yor = 75 1+ : : (41)
2 \/()\——z_l_)()\—z_)
In the limit of no decay (A = @) the previous result [4, 5] is recovered,
1/(1 —a)? for a < 1
YT = { ) (42)
af(l - a) f0ra>1
There is a critical muwmg dowi as Ihe critical VU‘ s — 1) is apprﬁached, and
right at the critical point G(2) x =~!/2, leading t0 a ¢~ !/? error decay instead of an

exponential one.

Figure 3 shows the relaxation time as a function of « for A = 0.2. The qualitative
behaviour is the same for other values of A, but the relaxation time decreases with A
(at the cost of a higher learning error, which will be calculated in the next section).

Instead of considering this average relaxation time, one could instead look at the
longest relaxation time in the system. This is given by the inverse of the smallest
eigenvalue of A 4 Al. The smallest eigenvalue of A is —-2z_, giving a relaxation time

1
b o
T ENFO -V “
This is also shown in figure 3, If the wcnght decay is chosen equal to ya, correspond-
ing to input noise, the relaxation time follows a curve like the dotied one in figure
3. The phase transition smears out because of the noise, but it is interesting to note
that what is left of it (the peak in 7') moves to smaller a. By inserting A = yo into
(43) and using 87'/3a = 0 one finds the value of « that gives the longest reiaxation

. . _'_)
timeis e . ={1+47)7".
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Figure 3. Relaxation times. The full curve is the average relaxation time r, and the
broken curve is the longest relaxation time 7/, both for A = 0.2. They peak at a = 1.
The chain curve is the average relaxation time for a weight decay of A = v (y = 0.2)
comresponding to input neise of level . The dotted curve is the longest relaxation time
for the same parameters.

5. Learning error

In this section I will calculate the size of the learning error. It is
1 [ B2
< D ACE=VE)p
# £C
1
=1+ ; Z [A:‘j<wiwj)T]£( Z [Bi{w 1)1’ (44)
3
Normalized this way, it is one if the output is zero (tabula rasa). It is assumed that
[C#C ]C - 6,uv

The second term in the error can be found from the Langevin equation (23) by
multiplying it by w; and averaging,

—Z S )T = {wtb)p
(45)

5702 Bg(w ZAU w;w; )‘ T +Z wi)T'
Using this to substitute for A;;{w,w;)y the error reads

E=1_%z‘_:[3,-(w.- ——Z[(w brlec + YPZ[ irlec: (46)

Since {w;)r = 3., 9;;(0)B; in this limit (see (11)) the second of these terms
becomes

! ):[B drle = o5 S0 Dl
i,j K

- ;Wtr[gA]{ = .:?(1 Ve @7
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0.5

Error

0.0

Figure 4 Asymplotic error as a function of o for T = 0. The full curve corresponds
10 A =0, the broken curve to k = 0.2, and the dotted curve corresponds (0 A = ~o
{v=0.2) {v0 =1 is assumed.)

where the Dyson equation (13) has been used in the last transformation. Here the
response function written with no argument means it should be taken at w = 0, ie.
G=G(w=0).

In [4] it is proven that if the targets (* are random

= & 3 [l = 52 06)- (43)

q is part of the correlation function (26), so using the fluctuation-response relation
(27) the third term in the error can be found,
A A

> [(“’?>T]ec == (TG + B%(,\G)) . (49)

To calculate the last term in (46) one maultiplies the averaged Langevin equation
(23) by (w;}r,

0= Z(w.')T(“".')T =3 Yo Bi{w; Z Agilwi)p{wy)p = Mw)z). (50

Subtracting this from (45) and rearranging the terms gives

Z(’?iwi)'r =7 Z(A‘Su‘ + Ay ) {wpw)p — (widpl{w;)r) = Yo ng}lcij- (51)
i ij ij

Using again the ﬂuctuation-response relation (27) g~'c = T1 and then

Z(m r=T/a. (52)
Collecting all the terms the error {44) bccomes
R _ 2
E=2 1_’\_§_C_;+(1_AG)—. 53)
o o OA

The asymptotic error as a function of « is depicted in figure 4 for some values
of X. By a comparison with figure 3 onc observes that the asymptotic error increases
when the learning time decreases.
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Almost the same calculation applies for output noise. The part independent of
the noise is unchanged. The only difference is that the fluctuation-response relation
has to be replaced by (30). The result is

E=___--——+(1-£(1—AG))T. 54)

The simple linear T behaviour in these equations is due to the fact that the T-
noise enters linearly in the Langevin equation. The 1/ behaviour comes from the
normalization of the error. If the error were normalized the same way as the original
cost function F, the 1/a would be absent.

If X is sufficiently small G(A) can be expanded,

~ 111

1—o 1 —
Gy mx-—2T L%,

[y
I
jui}
jw
>

1 b ]
LT |

2 21—« [1— 3
Then for A = 0 the error is
. T fora <1
Ez{a"1+— for o > 1 (56)

with weight noise.

Keeping more terms in the expansion allows one to follow what happens for A
close to 0. In particular the derivative of £ is always negative at A = 0, meaning
that the error always decreases close to A = 0. Thus a weight decay is beneﬁmal to
lCdllluls Dy Pulllllg LllC ucuvauvc U\.ludl LU ZEI0 LllC- mii‘liiﬁ‘l.im L.J Cafi UU lUullU dllu
it turns out that the effect is relatively small, of order T2 in this approximation at
small 7. But even if the error decrease is marginal it is worth remembering that
a weight decay also decreases the learning time. Since a weight decay corresponds
to input noise, one can say that weight noise and input noise act oppositely when
balanced right.

The output noise model shows the same behaviour

6. Conclusion

A linear ‘network’ consisting of one unit was studied, almost the simplest system one
can imagine. Nevertheless a rich and interesting behaviour was found. There is a
phase transition from perfect learning to imperfect learning at o == 1, if A = 0. For
A # 0 this transition is rounded, similarly to what happens in physical systems, giving
a finite relaxation time even at o = 1.

It was shown that the effect of noise in the input corresponds exactly to a weight
decay of size va. If the input noise has a finite time correlation (A < oo) the decay
decreases slightly and the response function changes as if the input patterns had a
more narrow distribution (to lowest order in 1/A). It is interesting to note that in
the thermodynamic limit (infinite N) input noise can be completely compensated by
a negative weight decay of same absolute size as the decay from the noise.

Noise on the output implies a pattern-dependent spatially correlated noise on
the weights, acting only in the subspace of weight space spanned by the patterns.
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Therefore the relaxation times are the same, and most other quantities like the
asymptotic error behaves qualitatively the same for weight and output noise.

An interesting effect of weight decay was discovered: a small weight decay (or,
equivalently, noise on the inputs) decreases the effect of weight or output noise. Since
the weight decay at the same time decreases the learning time, it will often pay to
learn with a small decay if the system is noisy.

Here only learning was studied. A very important issue is generalization, ie. how
well the network can imitate a teacher. If this teacher is another linear perceptron
with fixed weights, this generalization ability can be calculated. This has been treated
in [12] and is expanded in [13].

The hope is that the results from this simple system can guide us in the inves-
tigation of the more complicated and, from the point of view of applications, more
interesting nonlinear networks,

Acknowledgment
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Appendix A. Fluctuation-response relations

In the long time limit w;(w) = 5’ ¥, g:;(w)n;(w) (cf (25)), so the correlation
function is

eij (1) = ([w;(2) = (w; () plw; (2 + 7) = {w;(t + 7N rhr

= d(‘;f;;”e-ftw+w'v-*w‘*([w,:(w)—<w,-(w)>qn1[w,-(w’)—<ua-(c~")>a~l>fr

=257 [ e T S g (g (NI (AD

1

For both weight noise and output aoise the last noise average will produce a 276 (w+
w'}, 50

()= [ S S aal@dop-)mlm-w) (A

ar

cii{w) =" Zgik(w)gﬂ("w)(ﬂk(w)m(‘w))- (A3)
Ik

With the uncorrelated noise on the weights given by (24) (n (w)m(~w)) =
27Ty, 80

i (w) =295 1T Y gia(@)gjp(—w). (Ad)
k
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The product g(w)g(—w) can be found from the series expansion of g (12) (im-
plicit sums on repeated indices):

9ia(w)9j(~) = [Go(w)bys — GR(w) Agy + G3(@) A Ay, — ]
x [Go(~w)by; — GY(~w) Ay + GY(~w) Ay Ay — ]
= Go(w) Go(~w)8;; = [GHw)Gol~w) + Golw) G3(-w)) Ay
+ [G3(w) Gy (—w) + CY(w) Gi(~w) + Go(w) GE(—w)] Ay Ag; = - - --
(AS)

The quantities in the square brackets can easily be summed. Gy{—w) is equal to
the complex conjugate of Gy(w), Gh{w) = Gy(~w), 50

e 1 7 =n = G - G7 = ImG}
GrGo+ GG+ -+ + GGt =GDGO—G‘;—_—GZ—=GDGGEG—Z. (A6)
Then
Go(w)Gp(w)

G ip(—w) = ————— A [ImGy{w)é§;,
gJ(w)ng( ) ImGO(w) [ 0( ) 3

~ImGj(w) Ay + ImGH(w) Ay Ay — -

~

= ;“—]mg.-j(w). {AT)

Finally (A4} gives the usual form for a fluctuation dissipation theorem (FDT)
(@) = I Imgy; (). (a9

This can be integrated by using the Kramers-Kronig relations (see [11]) to give
;;(1=0)=Tg;(w=0). (A9)

For output noise given by (29) a similar calculation leads to (30). To see that
this fluctuation-response relation is the same as the one derived in [7] one has to use
equation (18):

i1 _ _ TaG
C:[T\T_trc]f_TU_AG)_l«{—G (A1)

where G means G{w = 0).
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Appendix B. Diagram expansion for input noise

In this appendix the leading corrections 1o the self-energy will be found. v, = 1 will
be assumed.

There are two families of diagrams in the self-energy, see figure 2. The family
where the two ends are connected by a pattern average can be summed exactly; these
include the original diagrams from the noiscless case, shown in figure 1. The first of
these (first in the second row of figure 2) gives, except for a minus sign,

'.%r /duﬂ' (e(w — el — W), Glw") = Ao?iw2”‘5(w —w'). (B1)

Here it was used that G{t) = 0 for ¢ < 0 (causality), and that G(t = 0) = 1. It
was also assumed that G(t) varies on a time scale much slower than 1/A, that is
the largest cigenvalue of A¢ has to be much smatler that A. To lowest order the
input noise corresponds to a weight decay of size v, which implies that the largest
eigenvalue is yo + (1 4+ /)2 Therefore the condition is

A»ya+ (14 Va)l. (B2)

This condition will also apply to the rest of the calculations here.
By calculating a few more diagrams from this family, as done earlier, it turns out

that each noise average just contributes v /(A —iw), so the sum of the whole family
can be written as

2
a(l—[G(u)+Ajiw]+[G(w)-i—Ajiw} —) 6w - )

[0 4

I G+ /(A T iw)

lw —w'). (B3)

This includes terms of higher order than 1/A, which of course does not hurt.

It is not straightforward to sum the other family of diagrams with a noise average
connecting the ends (first row of diagrams in figure 2). Therefore only the lowest
order ones are considered. Apart from the first of these, which is calculated in (37),
only the two following diagrams contributes to order 1/A. The first of these gives
the same as (B1), and the second gives (except for a minus sign)

G f deo” dewy duwy (el w; Je(wn)) e — & — 0 Je(w” = ' = wy)), G(w")
= ﬁfi—w”“w - ). (B4)

Higher order diagrams can be calculated in the same way, but they turn out to be
smaller by at least 1/A.

Finally the terms can be collected to give the self-energy,
oy a“y?' fa

A—iw_QA—iw+ 1+ G+~/(A—iw)

(BS)

C=ay-
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where the 276(w — ') is dropped. Because A is large, & can be approximated by
setting w = 0 in the new terms,

1+~/2 o
Y= — 6
M(l A >+1+G+7/A' (6)

In this approximation the weight decay is just a little smaller than was found to lowest
order in A. It is actually easy to solve for G. Putting X = ay[1 — (1 + v/2)/A])
equation (14) reads

. af/(1+v/A)
G = Al T T v/AY &1

If this is compared to (17) we see that it works exactly like having a different (reduced)
static variance of the input patterns, o2 = 1/[1 + v/Al.

Thus it has been shown that input noise corresponds (to order 1/A) to having a
weight decay of size yofl — (1 4+ +/2)/A)] and a variance of the input distribution
of 1/{1 + v/A)] instead of 1.
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